Creating High Signal-to-Noise Images
نویسنده
چکیده
This paper presents a comprehensive, self-contained guide to the process of CCD image reduction, from collection of raw data at the telescope through the creation of nal calibrated images, and contains detailed analyses of the removal of detector-induced eeects, ux and color calibrations, image mosaicing, and the propagation of noise. Concise recipes are outlined which describe the operations performed on images at each stage, including a method to create noise images which measure the exact noise values associated with every pixel value in data images.
منابع مشابه
روشی نوین در کاهش نوفه رایسین از مقدار بزرگی سیگنال دیفیوژن در تصویربرداری تشدید مغناطیسی (MRI)
The true MR signal intensity extracted from noisy MR magnitude images is biased with the Rician noise caused by noise rectification in the magnitude calculation for low intensity pixels. This noise is more problematic when a quantitative analysis is performed based on the magnitude images with low SNR(<3.0). In such cases, the received signal for both the real and imaginary components will fluc...
متن کاملAssessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملShearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملA New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملSpeckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images
Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کامل